On Spaces of Commuting Elements in Lie Groups
نویسندگان
چکیده
The purpose of this paper is to introduce a new method of “stabilizing” spaces of homomorphisms Hom(π,G) where π is a certain choice of finitely generated group and G is a compact Lie group. The main results apply to the space of all ordered n-tuples of pairwise commuting elements in a compact Lie group G, denoted Hom(Zn, G), by assembling these spaces into a single space for all n ≥ 0. The resulting space denoted Comm(G) is an infinite dimensional analogue of a Stiefel manifold which can be regarded as the space, suitably topologized, of all finite ordered sets of generators for all finitely generated abelian subgroups of G. The methods are to develop the geometry and topology of the free associative monoid generated by a maximal torus of G, and to “twist” this free monoid into a space which approximates the space of “all commuting n-tuples” for all n, Comm(G), into a single space. Thus a new space Comm(G) is introduced which assembles the spaces Hom(Zn, G) into a single space for all positive integers n. Topological properties of Comm(G) are developed while the singular homology of this space is computed with coefficients in the ring of integers with the order of the Weyl group of G inverted. One application is that the cohomology of Hom(Zn, G) follows from that of Comm(G) for any cohomology theory. The results for singular homology of Comm(G) are given in terms of the tensor algebra generated by the reduced homology of a maximal torus. Applications to classical Lie groups as well as exceptional Lie groups are given. A stable decomposition of Comm(G) is also given here with a significantly finer stable decomposition to be given in the sequel to this paper along with extensions of these constructions to additional representation varieties. An appendix by V. Reiner is included which uses the results here concerning Comm(G) together with Molien’s theorem to give the Hilbert-Poincaré series of Comm(G).
منابع مشابه
Fiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملCommuting Elements, Simplicial Spaces and Filtrations of Classifying Spaces
Let Γ denote the q-th stage of the descending central series of the free group on n generators Fn. For each q ≥ 2 and every topological group G, a simplicial space B∗(q, G) is constructed where Bn(q, G) = Hom(Fn/Γ , G) and the realizations B(q, G) = |B∗(q, G)| filter the classifying space BG. In particular for q = 2 this yields a single space B(2, G) assembled from all the n–tuples of commuting...
متن کاملCommuting Elements and Spaces of Homomorphisms
Abstract. This article records basic topological, as well as homological properties of the space of homomorphisms Hom(π,G) where π is a finitely generated discrete group, and G is a Lie group, possibly non-compact. If π is a free abelian group of rank equal to n, then Hom(π,G) is the space of ordered n–tuples of commuting elements in G. If G = SU(2), a complete calculation of the cohomology of ...
متن کامل